Oceans of Data
Proceedings of the 44th Conference on Computer Applications and Quantitative Methods in Archaeology

Edited by
Mieko Matsumoto and Espen Uleberg
Contents

Foreword.. v

INTRODUCTION .. 1

Oceans of Data: Creating a Safe Haven for Information.. 3
 Christian-Emil ORE

Theorising the Digital: A Call to Action for the Archaeological Community... 11
 Sara PERRY and James Stuart TAYLOR

ONTOLOGIES AND STANDARDS... 23

Is that a Good Concept? .. 25
 George BRUSEKER, Maria DASKALAKI, Martin DOERR, and Stephen STEAD

Sculptures in the Semantic Web Using Semantic Technologies for the Deep Integration of Research Items in ARIADNE.. 33
 Philipp GERTH, Dennis Mario BECK, Wolfgang SCHMIDLE, and Sebastian CUY

Formalization and Reuse of Methodological Knowledge on Archaeology across European Organizations........ 45
 Cesar GONZALEZ-PEREZ, Patricia MARTÍN-RODILLA, and Elena Viorica EPURE

Linked Open Data for Numismatic Library, Archive and Museum Integration... 55
 Ethan GRUBER

Sustainability = Separation: Keeping Database Structure, Domain Structure and Interface Separate............. 63
 Ian JOHNSON

Systematic Literature Review on Automated Monument Detection: A Remote Investigation on Patterns within the Field of Automated Monument Detection ... 69
 Karl Hjalte Maack RAUN and Duncan PATTERSON

Bioarchaeology Module Loading...Please Hold. Recording Human Bioarchaeological Data from Portuguese Archaeological Field Reports... 85
 Ana Lema SEABRA, Filipa Mascarenhas NETO, and Cristina BARROSO-CRUZ

Methodological Tips for Mappings to CIDOC CRM... 89
 Maria THEODORIDOU, George BRUSEKER, and Martin DOERR

An Ontology for a Numismatic Island with Bridges to Others... 103
 Karsten TOLLE, David WIGG-WOLF, and Ethan GRUBER

Integrating Analytical with Digital Data in Archaeology: Towards a Multidisciplinary Ontological Solution. The Salamis Terracotta Statues Case-Study ... 109
 Valentina VASSALLO, Giusi SORRENTINO, Svetlana GASANOVA, and Sorin HERMON

FIELD AND LABORATORY DATA RECORDING AND ANALYSIS... 119

Integrated Methodologies for Knowledge and Valorisation of the Roman Casinum City................................ 121
 Michela CIGOLA, Arturo GALLOZZI, Leonardo PARIS, and Emanuela CHIAVONI

A Multidisciplinary Project for the Study of Historical Landscapes: New Archaeological and Physicochemical Data from the 'Colline Metallifere' District ... 135
 Luisa DALLAI, Alessandro DONATI, and Vanessa VOLPI

From Survey, to 3D Modelling, to 3D Printing: Bramante’s Nymphaeum Colonna at Genazzano................. 147
 Tommaso EMPLER and Adriana CALDARONE

Towards a National Infrastructure for Semi-Automatic Mapping of Cultural Heritage in Norway 159
 Martin KERMIT, Jarle Hamar REKSTEN, and Øivind Due TRIER
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiments in the Automatic Detection of Archaeological Features in Remotely Sensed Data from Great Plains Villages, USA</td>
<td>173</td>
</tr>
<tr>
<td>Interpolating 3D Stratigraphy from Indirect Information</td>
<td>185</td>
</tr>
<tr>
<td>Closing a Gap with a Simple Toy: How the Use of the Tablet Affected the Documentation Workflow during the Excavations of the Rozprza Ring–Fort (Central Poland)</td>
<td>197</td>
</tr>
<tr>
<td>Supercomputing at the Trench Edge: Expediting Image Based 3D Recoding</td>
<td>207</td>
</tr>
<tr>
<td>Documenting Facades of Etruscan Rock-Cut Tombs: from 3D Recording to Archaeological Analysis</td>
<td>233</td>
</tr>
<tr>
<td>Archaeological Information Systems</td>
<td>243</td>
</tr>
<tr>
<td>Fasti Online: Excavation, Conservation and Surveys. Twelve Years of Open Access Archaeological Data Online</td>
<td>245</td>
</tr>
<tr>
<td>DOHA — Doha Online Historical Atlas</td>
<td>253</td>
</tr>
<tr>
<td>Digital Archives — More Than Just a Skeuomorph</td>
<td>261</td>
</tr>
<tr>
<td>When Data Meets the Enterprise: How Flanders Heritage Agency Turned a Merger of Organisations into a Confluence of Information</td>
<td>273</td>
</tr>
<tr>
<td>GIS and Spatial Analysis</td>
<td>285</td>
</tr>
<tr>
<td>Crossroads: LCP — Model Testing and Historical Paths During the Iron Age in the North-East Iberian Peninsula (4th to 1st Centuries BC)</td>
<td>287</td>
</tr>
<tr>
<td>Boundaries of Agrarian Production in the Bergisches Land in 1715 AD</td>
<td>299</td>
</tr>
<tr>
<td>Geometric Graphs to Study Ceramic Decoration</td>
<td>311</td>
</tr>
<tr>
<td>Vertical Aspects of Stone Age Distribution in South-East Norway</td>
<td>325</td>
</tr>
<tr>
<td>3D and Visualisation</td>
<td>337</td>
</tr>
<tr>
<td>Emerging Technologies for Archaeological Heritage: Knowledge, Digital Documentation, and Communication</td>
<td>339</td>
</tr>
<tr>
<td>New Actualities for Mediterranean Ancient Theaters: the ATHENA Project Lesson</td>
<td>353</td>
</tr>
<tr>
<td>Archaeology and Augmented Reality. Visualizing Stone Age Sea Level on Location</td>
<td>367</td>
</tr>
<tr>
<td>A Virtual Reconstruction of the Sun Temple of Niuserra: from Scans to ABIM</td>
<td>377</td>
</tr>
</tbody>
</table>
A 3D Digital Approach for the Study and Presentation of the Bisarcio Site ... 389
Paola DERUDAS, Maria Carla SGARELLA, and Marco CALLIERI

The Role of Representation in Archaeological Architecture .. 399
Mario DOCCI, Carlo INGLESE, and Alfonso IPPOLITO

Digital Archaeological Dissemination: Eleniana Domus in Rome ... 409
Tommaso EMLER

On Roof Construction and Wall Strength: Non-Linear Structural Integrity Analysis of the Early Bronze Age Helike Corridor House .. 421
Mariza Christina KORMANN, Stella KATSAROU, Dora KATSONOPOULOU, and Gary LOCK

An Exploratory Use of 3D for Investigating a Prehistoric Stratigraphic Sequence ... 433
Giacomo LANDESCHI, Jan APEL, Stefan LINDGREN, and Nicolò DELL’UNTO

Les gestes retrouvés: a 3D Visualization Approach to the Functional Study of Early Upper Palaeolithic Ground Stones .. 447
Laura LONGO, Natalia SKAKUN, Giusi SORRENTINO, Valentina VASSALLO, Dante ABATE, Vera TEREHINA, Andrei SINITSYN, Gennady KHLOPACHEV, and Sorin HERMON

Enhancing Archaeological Interpretation with Volume Calculations. An Integrated Method of 3D Recording and Modeling .. 457
Giulio POGGI and Mirko BUONO

3D Spatial Analysis: the Road Ahead ... 471
Martijn VAN LEUSEN and Gary NOBLES

Complex Systems Simulation .. 479

Weaving the Common Threads of Simulation and Formation Studies in Archaeology ... 481
Benjamin DAVIES

Evolving Hominins in HomininSpace: Genetic Algorithms and the Search for the ‘Perfect’ Neanderthal 495
Fulco SCHERJON

An Agent-Based Approach to Weighted Decision Making in the Spatially and Temporally Variable South African Paleoscape .. 507
Colin D. WREN, Chloe ATWATER, Kim HILL, Marco A. JANSSEN, Jan C. DE VYNCK, and Curtis W. MAREAN

Teaching Archaeology in the Digital Age ... 523

Archaeological Education for a Digital World: Case Studies from the Contemporary and Historical US 525
Anna S. AGBE-DAVIES

Teaching Archaeology or Teaching Digital Archaeology: Do We Have to Choose? ... 533
Sylvain BADEY and Anne MOREAU

DOMUS: Cyber-Archaeology and Education .. 541
Alex DA SILVA MARTIRE and Tatiana BINA

Digital Data Recording at Circus Maximus: A Recent Experience .. 547
Alessandro VECCHIONE and Domenica DININNO

Teaching GIS in Archaeology: What Students Focus On ... 555
Mar ZAMORA MERCHAN and Javier BAENA PREYSLER
A Multidisciplinary Project for the Study of Historical Landscapes: New Archaeological and Physicochemical Data from the ‘Colline Metallifere’ District

Luisa DALLAI¹, Alessandro DONATI², and Vanessa VOLPI²

¹Department of Historical Sciences and Cultural Heritage, University of Siena, Italy
²Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy

Corresponding author: luisa.dallai@unisi.it

Abstract
In this paper we will present some results obtained by a combined multidisciplinary approach to the study of a territory located in the southern part of Tuscany, the ‘Colline Metallifere’ district. The area has been studied from different points of view, and there are many written contributions concerning the evolution of its human landscape over the centuries. In this paper we are focusing particularly on the use of chemical analyses on crucial historical areas. The considerable amount of information retrieved and the unquestionable value of the data obtained by portable X-ray fluorescence (pXRF) analyses are now opening new fields to the use of the portable instrument. The new opportunities offered by the ‘NeuMed’ ERC project, based in the University of Siena, will allow the testing of the reliability of this technique on a wider scale, in multidisciplinary research that aims to reconstruct the historical landscapes of the area.

Keywords: interdisciplinary methodology, archaeological surveys, physical-chemical analysis, pXRF, mining territories

The Colline Metallifere district: a multidisciplinary open air laboratory (L.D.)

In recent years, the Colline Metallifere district (southern Tuscany) has become a multidisciplinary study area in which a combined archaeological, geological, and environmental approach is providing new and interesting evidence for the reconstruction of historical landscapes. The territory is very well known from the numerous research projects undertaken over the years on archaeological and historical targets and mining deposits (Dallai and Francovich, 2005). The hills which give the area its name cover part of Livorno and Grosseto provinces; the territory includes the coast and the immediate hinterland of the Gulf of Follonica, an important working hub for the iron oxides (hematite) that have been exploited on Elba Island since the Etruscan period.

Ever since that period, the entire area has been historically very important for mining activities. During the medieval period in particular, the exploitation was especially focussed upon mixed sulphides deposits of copper, lead and silver; the consistent ore bodies were worked in order to obtain the metals needed for coin production.

These rich deposits and their exploitation attracted the interest of important aristocratic families, which, since the central centuries of the medieval period, developed their control over the underground resources through fortified settlements placed close to the mining fields. The archaeological research undertaken since the 1980s and the excavation of ‘mining castles’, such as the well-known castle of Rocca San Silvestro or the castle of Rocchette Pannochieschi, have demonstrated that the development of local lordships in this geographical context was deeply linked to the control and exploitation of metals that could be used for coinage (Bianchi, 2010).

Since then, a large number of research projects have been carried out with the aim of studying the possible relations between settlements and mineral resources, with particular reference to settlement patterns and the control over the cycle of production through the centuries. Extensive surveys on territorial samples have been carried out in order to define the main aspects of mining exploitation and metal production; the data collected has been processed with the aim of defining a broad picture of the territory, both from an archaeological, geological and environmental perspective (Benvenuti et al., 2014).

Out of this wide territory, specific targets have been selected for a multidisciplinary research; these ‘pilot’ studies started with in-depth research carried out on mining fields (particularly in the mining areas of
Serrabottini and Niccioleta, close to Massa Marittima, Grosseto province). In order to get the maximum amount of useful information, a combination of underground surveys, fieldwork and XRF analyses on water-borne sediments and soils have been planned. The data collected has clarified the technical characteristics of the production and the environmental impact of ancient mines on the surrounding area. Finally, chemical analyses carried out on waste material has revealed a skilful selection operated at the mine head in order to eliminate useless minerals, zinc in particular (Aranguren et al., 2007; Dallai et al., 2015a; Dallai et al., 2013). A combination of underground surveys, fieldwork and XRF analyses on fluvial sediments and soils explored the technical aspects of the production and the environmental impact of ancient mines in the surrounding area (Aranguren et al., 2007).

The multidisciplinary approach has focused not only on territorial samples, but has also included the study of specific archaeological sites; some of which are medieval settlements located in the core of mining areas (that is the case of the church of San Niccolò, near Montieri); some are production sites (as for the alum production site of Monteleo, close to Monterotondo Marittimo); whilst others are sites based in the coastal plan, near the shore, that have been identified by archaeological surveys and remote sensing techniques and recently excavated (i.e. the Carlappiano site, near Piombino) (Figure 1). On all these specific places, as well as on other key samples that have been discussed in previous papers (Dallai et al., 2015b), a multidisciplinary approach has been first planned and then undertaken directly on site. Finally, the obtained results have been examined and analysed in order to obtain increased information. The final goal of our project is, in fact, to provide an historical and environmental landscape reconstruction based on multidisciplinary data sets; merging historical data with chemical-physical results we are gradually adding crucial pieces of information to the picture of one of the most important mining district of the Mediterranean area.

From the different case studies, by combining archaeological and physico-chemical data (pXRF in particular) we are gradually building up a solid database that is helping to define the historical outlines of the Colline Metallifere landscape. Moreover, building upon previous research experience, pXRF analyses are now playing an essential role in the research strategies of the 5 year ERC project ‘NeuMed Origins of a new economic union, 7th–12th centuries: resources, landscapes and political strategies in a Mediterranean region’ based in the University of Siena (P.I. Prof. Richard Hodges). The reconstruction of the historical features in the landscape becomes crucial to understand the deep changes that occurred in settlement patterns, trade routes and economical background of the area between Late Antiquity and the 12th century.
Physico-chemical analysis of different environmental matrices is becoming a fundamental tool for multi-scale archaeological prospections. From the enrichment or depletion of certain elements or molecules in soil, stream sediments, groundwater etc., their spatial distribution and their statistical treatment gives the chemical fingerprint of a territory with possible genuine correlations with ancient human activities (Oonk et al., 2009; Anguilano et al., 2010).

Recently, pXRF has been used for the quantification of major and minor elements in soils, stream sediments and artefacts, and it emerged as the elective technique for in-situ analysis. In fact, the pXRF instrument can be directly used on the surface of untouched environmental matrices and immobile artefacts. It can be also used for laboratory analysis with treated (dried, milled, sieved) samples. The major features of pXRF analysis are the non-destructive nature of analysis, the speed of operations, the capability of on-site measurement, and the immediate availability of analytical results (Potts and West, 2008; Shugar and Mass, 2012). The protocol can be used in multi-scale investigations (in-situ and medium-large territorial scale) with both predictive and descriptive goals using slightly different techniques.

In-situ studies were conducted collecting data using a pre-determined grid frame of 1 m² (1 m × 1 m) areal elements. Inside each areal element the concentration of a chemical species was given by the average of three single pXRF measurements (Dallai et al., 2015a). Depending on the required sampling density, the number of pXRF sample points in one of areal element could be much higher, often following the concurrent excavation of single units. In this context the measurements done directly on archaeological finds or archaeological structures (architectural elements, furnaces, walls, mortars, slags etc.) can also be included, which is a great help for their functional characterisation.

In the medium-large territorial scale the sampling density is lower and usually follows the geomorphological elements of the territory. The fluvial stream sediments were proven to be the most useful environmental matrix for studying the chemical anomalies due to ancient industrial settlements. This because the streams and rivers are the collector of the contaminated material originated by one or more different sources within their own drainage basin. In particular, the production activities exploited in this mining area can be traced in detail from the extraction of the mineral ores to the smelting and refining of the metals.

On the other hand, the ancient mining field can also be investigated spatially and directly. In this case, the concentration of elements in geo-referenced soil samples gives the chemical fingerprint of the area.

Both laboratory and on-site pXRF analysis were performed using an Olympus DELTA-premium handheld pXRF analyser, equipped with a 40kV tube, a ‘large area SDD detector, accelerometer and barometer for atmosphere pressure corrections for light elements measurements. The laboratory measurements were done with the instrument mounted on a fixed station (Figure 2). To ensure the quality of the data obtained, operating protocols was used (EPA, 2007). All laboratory samples were collected in the same spot as the on-site measurements; they were dried at room temperature, sieved at 125μm and placed in the appropriate sample holders. Data were acquired with the ‘Soil Mode’ (3-beam) of the instrument which utilises Compton Normalization for low concentrations (PPM to 3%) of elements in light matrices. The result for each sample was the average of the three measurements. Chemical data was finally geo-referenced together with the archaeological information in a GIS application (QGIS) used to produce distribution maps.

Medium-large territorial scale (V.V., A.D.)

In this work we present the results obtained in two sites that have recently been investigated. One of them was the ancient Serrabottini mining area, and the other is the Monte Gai site; both of them are close to the medieval town of Massa Marittima. Here, the major activity was the extraction and processing of mixed sulphide ores for the production of copper. The chemical data collected in mining dumps areas confirmed the major
goal of the exploitation (copper production) as well as the extent of heavy metal pollution and its diffusion. In the Figure 3, the concentration of Cu, Zn and Pb are reported on the map of the site, showing the position of the large mine tails dumps that are located in a strategic position with respect to the extraction sinks (red circles). The data also revealed that the diffusion of the contamination is quite restricted to the sites and its spreading is poorly enhanced by the weathering of mining residues.

Regarding the Serrabottini site, a k-mean clustering analysis was also performed. In Figure 4, 'A' reports one of the ten different correlation diagrams obtained by the k-mean clustering, in which different colours represented samples that were grouped by chemical similarity. It was noteworthy that by observing geo-referenced data on the site map (Figure 4B), a spatial separation of the clusters emerges. In fact, Cluster-1, with higher concentration of Cu, Zn and Fe was mainly restricted in two small areas with respect to the Cluster-2 data. This fact could be explained with the hypothesis that in these two areas a different production activity (namely roasting of mineral ores) was accomplished. Cluster-3 was constituted by only two samples with very high lead concentrations.

This result can also be explained by considering that during the first phase of the metallurgical process for copper production, the roasting of mixed sulphide ores, induced a large loss of the most volatile metals: arsenic, antimony and lead; while zinc was not completely lost in this phase. To eliminate almost all impurities and zinc, after the roasting, a preliminary phase of smelting...
produced a copper matte that was roasted a second time before the final smelting.

In-situ analyses and results (L.D., A.D., V.V.)

Regarding in-situ investigations, here we present three key sites showing relevant data, with interesting connections to the archaeological evidences: the ‘Canonica di San Niccolò’ site (Montieri — GR); the ‘Allumiere di Monteleo’ site (Monterotondo Marittimo — GR) and the Carlappiano site (Piombino — LI).

‘**Canonica di San Niccolò’ (Montieri — GR) (L.D., A.D.)**

Montieri district has been one of the most prominent silver, lead and copper mining areas of the Colline Metallifere. It was certainly at the heart of a complex system of ore-working and mineral production, probably connected to the activities of the neighbouring castles. Its’ importance is documented by the presence of a mint which, between the end of the 12th century and the first half of the following century, struck coins on behalf of the Volterra bishop.
NW from the village, on the slopes of the so called 'Poggio', a systematic set of analyses have been carried out on the archaeological site of the Canonica di San Niccolò (a parish church), a peculiar church building with six apses, with adjacent spaces and buildings dedicated to different activities. The documents attest the existence of the site from at least 1133, while the dig provides evidence of an initial occupation of the terraced site probably in the period between the 9th and 10th centuries. The final abandonment of the site occurred just before the 15th century (Benvenuti et al., 2014).

At the Canonica site, a very large sampling grid frame of 1 m² was applied, covering a large part of the excavation area (AREA 3000 and AREA 2000) (Figure 5). The chemical elements for this type of analysis considered as significant 'tracer' elements, useful to identify archaeometallurgical production, are Pb, Fe, Cu and Sn.

Simple statistic parameters for Fe, Cu, Sn, Pb data regarding the Canonica site showed lower values for AREA 3000 with respect to AREA 2000, both for averaged and peak values (Table 1). This fact indicates that different activities were carried out in the two parts.

AREA 3000 had principally an agricultural function whilst AREA 2000 was a production area where different types of craft activities were conducted. In this area the excavation campaigns had already identified the remnants of forging activities and other production evidence.

A more accurate analysis was obtained by observing the spatial distribution of the metal concentrations (Figure 6). In the western part of AREA 2000, the higher concentrations of Pb and Fe confirmed the presence of a forge, while in the centre, high values of Sn and Cu

<table>
<thead>
<tr>
<th></th>
<th>Fe (mg/kg)</th>
<th>Cu (mg/kg)</th>
<th>Sn (mg/kg)</th>
<th>Pb (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA 2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average</td>
<td>416912</td>
<td>64.7</td>
<td>19.7</td>
<td>69.4</td>
</tr>
<tr>
<td>st. dev.</td>
<td>10101.1</td>
<td>73.3</td>
<td>23.5</td>
<td>50.2</td>
</tr>
<tr>
<td>min</td>
<td>12161</td>
<td>10</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>max</td>
<td>97993</td>
<td>898</td>
<td>239</td>
<td>371</td>
</tr>
<tr>
<td>AREA 3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average</td>
<td>36224.4</td>
<td>37.7</td>
<td>19.3</td>
<td>57.9</td>
</tr>
<tr>
<td>st. dev.</td>
<td>5821.2</td>
<td>11.5</td>
<td>12.6</td>
<td>36.0</td>
</tr>
<tr>
<td>min</td>
<td>11567</td>
<td>5</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>max</td>
<td>59584</td>
<td>96</td>
<td>81</td>
<td>346</td>
</tr>
</tbody>
</table>
identified the presence of an activity linked with the use of an alloy of these two metals. The subsequent dig campaign discovered the remains of a bell-kiln located exactly in the area of the pXRF anomaly (Figure 7, Dallai et al., 2015a). No evidence was found regarding the anomalous presence of Pb related to the silver production.

In this case, the in-situ analysis has confirmed and demonstrated the reliability of this technique and the descriptive and predictive power for the study of archaeological sites with a production ‘vocation’.

The reported study performed at the Canonica of San Niccolò, was a part of a wider project started few years ago in order to understand the productive history of the small medieval village of Montieri, one of the most important silver extraction sites during the Middle Ages. Previous investigation took into account the metal concentrations in the stream and river sediments of the area. Using the approach on medium-large territorial scales, a wide range of information about ancient mining, roasting and smelting activities was obtained for the area around the village (Dallai et al., 2015a). Contrary to previous work, the rivers around the Canonica did not present evidence of metal contamination. In summary, the combination of physico-chemical and historical analysis have been definitely useful to understand the nature of the metallurgical activities undertaken near the village of Montieri, as well as to detail the nature of working activities that took place at the Canonica site. In this case, the absence of metal processing evidence
excluded its direct involvement in the silver economy, which was the most particular feature of the area during the medieval centuries.

‘Allumiere di Monteleo’ (Monterotondo Marittimo — GR) (L.D.)

The Monteleo alum works are located in the NW reaches of the Monterotondo Marittimo municipality and extend along the two banks of a local stream, the waters of which played an essential role in numerous steps of the production process (Dallai, 2014). From an archaeological point of view, the discovery of this site and of a non-metallic working cycle in the Colline Metallifere district dating to the late medieval period, such as the alunite one, has enlarged upon the already detailed evidence of pre-industrial extraction activities in the area, which until now referred almost exclusively to the cultivation of mixed sulphides.

The raw material worked in this site is alunite, an aluminium potassium sulphate (Kal,(SO₄),(OH)) that is practically insoluble in the natural state. Nevertheless, it is possible to transform alunite into high quality alum through a process of roasting, maceration, leaching and crystallisation known since medieval times and described in detail in two renown 16th century technical treatises: De la Pirotechnia by the Sienese, Vannoccio Biringuccio published in 1540, and De re metallica by Giorgius Agricola, published in 1556: to date, detailed reconstructions of the technical procedures and tentative functional interpretations of known material finds have mostly been based on these descriptions.

There are currently only a few but significant case studies on archaeological sites linked to the production of alum from alunite, and Monteleo is one of these. The excavation, begun in 2008 by the University of Siena, is providing important new information on adopted technologies. Most of the structures which have been brought to light may be ascribed to the so-called ‘Renaissance phase’ of the site, i.e. to between the end of the 15th century and the first half of the 16th century, a period of documented renewal of alum mining and processing in numerous areas of Tuscany (Boisseuil and Chareille, 2009) (Figure 8).

Despite the written sources, the archaeological investigation revealed a longer history on the site, with evidence of production activities starting much earlier than the 15th century. The remnants of wall structures in irregular limestone blocks bonded with soil, most likely relating to a furnace, refer to this earlier period and were obliterated by the 16th century masonry of the alum works. Radiocarbon dating performed on different charcoal samples have proven that the furnaces occupying the terrace, as well as other productive structures and forges identified on the site, were used in the late 13th century.

In-situ pXRF analysis (i.e. analysis planned inside a single archaeological site), were conducted during the excavation campaigns in order to understand the kind of production related to these ancient remains. Whilst on the Canonica site the pXRF analysis was conducted principally on the soil, at Monteleo this technique was also applied to the remains of the productive structures, as well as on finds (slags and metal droplets). The pXRF analysis, in particular has identified former metal production involving copper and silver sulphides. Data analysis showed the presence of high anomalies of Cu (2000 mg/Kg) and Fe (3000 mg/Kg) in specific and restricted areas of the site, linked respectively to a copper furnace and a forge (Figure 9). The pXRF analysis of several metallic fragments and residues from several stratigraphic units show high concentrations of S, Ca, Cu, Fe, Pb, Sn, Zn and Ag; copper is always present with high concentrations (60 wt%) (Dallai and Volpi, 2015).

Carlappiano (Piombino — LI) (V.V.)

While the previous examples proposed have shown the high potential of analyses performed on archaeological excavation and territorial samples, new research perspective are now open to a multidisciplinary approach within the frame of the ERC Advanced European Research Project Neumed, mentioned above. The project, started in October 2015, has selected the first targets on which archaeological excavation as well as environmental analysis have been planned and the Carlappiano site is one of these. Prior to the dig, remote sensing (i.e. magnetometer, drone and historical aerial photographs analyses) as well as pXRF measurements have been carried out, providing promising initial results. The site is located on a dune close to the shore.
line, on the boundary of what once was a coastal lagoon, not far from the city of Piombino. From historical aerial photos, a dry area of about 8 ha surrounded by a dark almost circular sign was clearly visible. The analysis of 19th century historical cartography allowed us to recognise a hydrographic system composed of two different streams, which met exactly at the height of the dune, very close to the site, and lead to the sea with a seemingly large mouth.

The pottery and finds collected on the surface offered a wide chronological range: some were dated to the Bronze Age, many others could be referred to the Roman periods (imperial and late antique), and to the early medieval (ca 9th AD) and central medieval centuries (13th–14th) (Dallai et al., 2003; Marasco, 2013).

Analyses using pXRF were performed on the Carlappiano area, by using both on-site and laboratory methods. The on-site analyses were conducted both inside and outside the anomaly previously observed by aerial images (interpretation of vertical historical coverage, 1938–2015). For this investigation, a particular sampling strategy was developed. Six transects, with North — South direction were investigated, having one measurement every 20 meters; some measurements were taken also in the area surrounding the site. The chemical elements analysed were As, Cu, Zn, Fe, Ca and Pb (Figure 10). It is noteworthy that the element distribution showed the presence of two different soil compositions, and that the separation line between them corresponded almost perfectly to the aerial anomaly boundary. A hypothesis is these differences could be related to the function of the settlement that the archaeological excavation has linked to salt production (Dallai et al., in prep).

Conclusions (L.D., A.D., V.V.)

The use of pXRF on archaeological contexts is gradually gaining credit, given to the amount of case studies that are providing new evidence for the reliability of this technique. The multidisciplinary approach developed in the Colline Metallifere project and the data collected,
Figure 10. On the Carlappiano site (Piombino — LI), the archaeological dig has been anticipated by a multidisciplinary strategic approach, in order to map archaeological remains and relic landforms. These were visible both on-site (air photo interpretation of vertical historical coverage, 1938–2015) and in the surrounding area. In particular pXRF has highlighted how the roundish shape corresponds to an effectively different soil composition. In Figures B–E: Fe, Ca, Cu and Zn concentrations and in the legend are the concentration range considered for each element.
that we have briefly presented, demonstrate that pXRF can greatly help in understanding the nature of activities carried out on ancient sites, as well as defining the use of productive structures and entire territories. Moreover, the proper use of pXRF techniques and the careful evaluation of the analytical results based on the co-operation of different research expertise, can not only describe the environmental and historical evidences, but can be used as a powerful predictive tool which can drive the research.

Through the combination of different datasets, including those that can be obtained from pXRF analyses, the reconstruction of historical landscape can definitely be more detailed; the amount of measurements that can be performed by the user-friendly pXRF has to be considered as an advantage on wider scale projects, like the one we have described. From the consistent experience gained with the multidisciplinary study of the mining territories of the Colline Metallifere we can now experiment with the potential of pXRF on different kinds of sites, such as the coastal ones selected by the NeuMed ERC project, along with Carlappiano, which is provided the first, promising case study.

References

Marasco, L. (2013) ‘La Castellina di Scarlino e le fortificazioni di terra nelle pianure costiere della

CAA2016: Oceans of Data gives an up-to-date overview of the field of archaeology and informatics. It presents groundbreaking technologies and best practice from various archaeological and computer-science disciplines. The articles in this volume are based on the foremost presentations from the 44th Computer Applications in Archaeology Conference 2016, held in Oslo. The theme of CAA2016 was ‘Exploring Oceans of Data’, alluding to one of the greatest challenges in this field: the use and reuse of large datasets that result both from digitalisation and digital documentation of excavations and surveys.

Mieko Matsumoto is a member of the scientific staff at the Museum of Cultural History, the University of Oslo.

Espen Uleberg is the coordinator of the Digital Documentation Section at the Museum of Cultural History, the University of Oslo.